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A time-dependent transport problem in which a monoenergetic point source emits 
a pulse of radiation into an infinite medium has been solved by Laplace transform tech- 
niques. Auxiliary information inferred from the physical nature of the problem is incor- 
porated into the Laplace inversion procedure to eliminate the oscillatory solutions 
which usually result from attempts to numerically invert Laplace transforms. This 
simultaneous utilization of mathematical and physical information has made it possible 
to obtain credible time-dependent solutions for the transport problem under con- 
sideration. 

1. INTRODUCTION 

Solution of time-dependent transport problems by use of Laplace transform 
techniques is not a new idea [l]. The appeal of such an approach is quite obvious. 
Application of the Laplace transform to the time variable in the time-dependent 
transport equation produces an equation for the transform function which is 
formally identical with the time-independent transport equation. Hence, a reduction 
in dimensionality of the problem is achieved, and, in many instances, well- 
developed, time-independent methods may be used to solve for the transform of the 
particle flux. 

There is one nearly insurmountable difficulty associated with the transform 
technique. In all but the most trivial problems, numerical methods must be used 
to solve for the transform function. This means that the transforms themselves are 
given as numerical values of finite accuracy at a limited number of values of the 
transform variable. Under these circumstances the unbounded nature of the 
Laplace inversion operator nearly always manifests itself, and conventional 
numerical-inversion schemes do not yield a credible time-dependent solution. 

Considered as a strictly mathematical problem, numerical inversion of Laplace 
transforms is, for all practical purposes, an impossible task. Yet, in many physical 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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problems considerably more information than the transforms is known about the 
time-dependent solution. This information, which we designate as auxiliary 
information or constraints, includes knowledge of initial value and slope, 
asymptotic value, monotonicity, “smoothness,” the integral of the function, etc. 
One of us (F.B.) has devised ways in which any available auxiliary information 
can be incorporated into the inversion procedure. The application of constraints 
usually serves to eliminate the unstable time-dependent solutions which are, to be 
sure, compatible with the imprecisely known transform values. 

In Section 2, we consider the task of calculating transforms of the solution to a 
simple time-dependent transport problem. This problem consists of a point source 
with time-dependent intensity that is situated in an infinite medium. Several 
methods of solution have been used. The reasons for this redundancy are twofold. 
First, by comparing results from two different, but exact, methods the magnitude 
of the arithmetically introduced error in the transforms can be estimated. It is 
useful in the inversion procedure to have an idea of the absolute accuracy of the 
transforms. Second, the use of time-independent discrete-ordinates techniques on 
the same problem allows us to evaluate the feasibility of calculating usable trans- 
forms for a wide variety of time-dependent transport problems. 

Section 3 presents the essential features of the numerical inversion methods. This 
method is a special application of a more general capability developed to solve 
numerically the Fredholm integral equation of the first kind. A more detailed and 
comprehensive description of this capability will be published elsewhere. 

Finally, in Section 4 we present numerical results for the solution to the time- 
dependent problem we are considering. We compare our results with those obtained 
with cruder methods by other workers. 

2. CALCULATION OF THE LAPLACE TRANSFORMS 

As an example, we shall solve the following problem by the transform technique. 
Consider a point source which emits particles isotropically with a time-dependent 
strength of s(t). The particles are assumed to be monoenergetic. The medium in 
which the source is located is homogeneous and infinite in extent, and it scatters 
particles isotropically without degrading their energies. For this problem the 
appropriate time-dependent transport equation is 

[(l/u>(Vt> + 8 . V + 01 y(r, Q, 0 = a(r) W> + z / &, Q’, t) dQ’, (1) 

with the condition that v = 0 for t < 0. Recall that in one-dimensional spherical 
geometry 
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where p is the dot product of rR and the coordinate unit vector. Here, v(r, SL, t) 
is the flux of particles at r which are moving in direction SZ at time t, 0 is the total 
interaction cross section, c is the ratio crJu, and us is the scattering cross section. 

Let us introduce the Laplace transform of 9 defined by 

$(r, Sz, s) = 1: cp(r, S2, t) e-st dt. (2) 

Also, we define the Laplace transform of the source-strength time dependence to be 

Y’(s) = 1” S(t) ecst dt. (3) 
0 

We now multiply Eq. (1) by e-st and integrate over t from zero to infinity. We 
obtain as the equation for the transform 

[ Q . V + (u + $)I $(r, 8, s) = 6(r) Y’(S) + z j” #(r, SZ’, s) da’. (4) 

Notice that if we make the substitutions 

and 

then the equation for the transform /J, 

[Gi . V + a’] #(r, S2, s) = 6(r) S + $$I #(r, Q’, s) dsZ’, (5) 

has exactly the same form as the time-independent transport equation for this 
problem. This development forms the basis for the statements in the introduction 
(Section 1). 

Since the behavior of the unscattered flux is obtained trivially, we shall be 
concerned mainly with the time dependence of the scattered portion of the angle- 
integrated flux. The latter quantity is given by 

qhdr, t) = dr, t) - (e-oc/4nr2) S[t - (+)I, (6) 
where 

dr, 0 = j dr, % t> da. (7) 
457 
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The obvious relation of ~(r, t) to the solution of Eq. (5) is 

#<r, s) = jr y(r, t) ecst dt = j,, #(r, 9, s) dS2. (8) 

In the numerical work which is discussed next, we use u = 1 cm-l, z, = 1 cm/set, 
and c = 0.3. We further assume that the source is switched on instantaneously at 
t = 0 to an amplitude of 4 particles/set and then abruptly switched off at 
t = 0.25 sec. For this behavior Y(s) becomes 

Y(s) = (4/s)[l - e-sj4]. (9) 

Case-deHoflmann-Placzek Solution 

Case, deHoffmann, and Placzek (CdeHP) [2] present formulas and tables which 
allow the computation of numerical values for the solution of the steady-state 
point source problem with S = u = 1. By appropriately scaling their results, 
numerical values for #(r, s) can be obtained for a range of s values. 

The scaling procedure is as follows. Aside from the spherical divergence, the 
transport solution depends upon the product UT. Therefore, to compute #(R, s), 
we define an effective r and c such that 

and 
[U + (S/u>lR = ureff = reff 

Ceff = C/(1 + $) = C/(1 + S), 

and use these effective values to find the transform from the results of CdeHP. 
The final step in determining #(R, s) is to multiply the number obtained from 
CdeHP by (rerr/R)2 and Y(s). 

Although a few of the desired transform values could be derived directly from 
numbers tabulated by CdeHP, the majority had to be calculated from their formulas. 
Our computations were performed with a CDC-6600 computer. Except for their 
function E(C, I) {Ref. [2, p. 76, Eq. (40)]}, wherever direct comparison was 
possible our numerical results agreed exactly with their tabulated values. 

We numerically evaluated the integral which defines E(C, r) in two ways, The 
first method was a standard adaptive Simpson’s rule routine; the second method 
used a subdivided-interval, high-order Gaussian quadrature. These two methods 
produced function values which differed at most by one unit in the seventh signif- 
icant figure. For certain values of the parameters, the CdeHP values for F(C, r) 
listed in their Table 16 differed from our values by about 0.1%. 

The transform values of the scattered flux at radii of 3 and 6 cm as derived from 
the CdeHP results are listed in Table I. 
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Polynomial Expansion Solution 

Another method by which transforms for our example can be calculated is the 
polynomial expansion method of Fano and Spencer (FS) [3-51. Application of this 
method to the monoenergetic problem considered here is simpler than is treatment 
of the problems for which Fano and Spencer originally developed their method. 
We shall briefly outline the use of this method for our example. 

It is advantageous to separate the total flux into unscattered and scattered 
components. Then the equation satisfied by the scattered flux transform is 

To proceed, we express the scattered-flux transform as 

(12) 

where P&) is a Legendre polynomial. Substitution of Eq. (12) into Eq. (11) and 
use of the orthogonality properties of the PC enables us to derive 

If1 lf2 - -+~p,,1-A[+ [ 21+1 r 

as the recursion relation for the N1 . 
We define the moments of Nl to be 

r”N,(r, s) 4.rrr2 dr. 

$1 Nz-1 

(13) 

(14) 

Using this definition in Eq. (13) we find that the moments are given by the inter- 
linked hierarchy of equations 

(21 + 11-l [(I + 1X1- 4 ~~+l,,-l - 1U + n + 1) L,,-,I 
= c’~‘b~,~S~,~ - u’bl,, + c’Y(s)(u’)-IE n! S,,, , (15) 

where in the derivation it is necessary to assume that no particles penetrate to 
r = co. Beginning with boo, this expression can be solved for all the required 
moments. 



324 RENKEN AND BIGGS 

We are interested in the integrated scattered-flux transform 

(16) 

To reconstruct N,,(r, s) from the moments given by Eq. (15), we assume that the NL 
can be written as 

(17) 

Here, y = (T’T and the Wnz(y) are a set of biorthogonal polynomials which are 
discussed by Fano and Spencer [4]. By using the orthogonality properties of the 
W,Q) and their adjoints, we find that the coefficients a,&) are related to the 
moments from Eq. (15) by 

%&) = i (423’+3+1 (2;;1;l), (7) bl,,j,&). 
j=O 

(18) 

Using the above formalism, we have calculated No@, s). Unfortunately, the 
sequence of partial sums generated by Eq. (17) does not converge rapidly. For 
most combinations of R and s, 30 to 50 terms in Eq. (17) sufficed to give six-figure 
convergence. Large values of s proved particularly difficult to treat. In these cases 
a 70-term series did not yield results with the desired accuracy. Since numerical 
problems, apparently due to finite accuracy of the CDC-6600 double-precision 
arithmetic, began to manifest themselves, we seem to have pursued this technique 
as far as possible. The transforms calculated by this method are also listed 
in Table I. 

Discrete-Ordinates Solution 

Although the previous two methods provide accurate transform values, it is of 
interest to calculate transforms by a method for which the restrictions on the 
nature of the physical problem are less severe. The method of discrete ordinates 
(MDO) [6] is a versatile and accurate numerical method for solution of a wide 
class of transport problems. For more general situations, it is just such a capability 
which is needed to solve the equivalent of Eq. (5). 

We have calculated transforms for the problem considered here with the MD0 
as implemented by a computer program called DTF69 [7]. This code is a modifi- 
cation of the well-known DTF-IV program [8]. The results of the calculation are 
listed in Table I under the heading “DTF69.” 

Several comments about these transforms can be made. We observe that the 
s = -0.7 MD0 values are relatively more inaccurate than the results for nearby 
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values of S. After performing calculations with several different radii for the 
necessarily finite spherical-transport region, we conclude that the cause of the 
discrepancy is due to the inadequate representation of an infinite medium by even 
a 33-mfp radius sphere. This effect is most pronounced for s = -0.7, since the 
cross-section augmentation essentially cancels the absorption, i.e., c’ = 1, and 
we are left with a pure scattering problem. Because of machine storage limitations, 
it is difficult to use a radius large enough to mock up an infinite medium when no 
absorption is present. 

In general, we see that there is reasonable agreement between the MD0 values 
and those obtained by the other methods. After some computational experimen- 
tation we conclude that the observed divergence of transform values in Table I 
results from an increase in the effective total cross section as s increases. For very 
accurate results the MD0 requires that the discrete-spatial intervals be a small 
fraction of a mean-free-path thick. As s increases the limitation of finite computer 
memory, even on a large machine, means this requirement can be satisfied less and 
less well. Although the number of spatial and angular intervals varied somewhat 
with s, at least 300 spatial intervals and 22 angular intervals were used in these 
calculations. This comparison indicates that calculation of very accurate transform 
values requires the use of as fine a discretization of space and angle as the computer 
capacity will allow. 

Our MD0 calculations treat the unscattered radiation analytically and use these 
results to compute first-collision sources in each spatial interval. In order to 
minimize any extraneous effects introduced when a finite-duration radiation pulse 
propagates through an artifically discretized spatial mesh, we have defined an 
averaging procedure to compute the Laplace transform of the source strength in 
each interval. Therefore, we feel it is unlikely that pulse propagation effects 
contribute much to the discrepancies displayed by the MD0 numbers in Table I, 

3. NUMERICAL INVERSION PROCEDURE 

Having obtained approximate values #(r, sJ for the Laplace transform at a finite 
number of points on the real s axis, we must now solve the integral equation 

#(r, S) = /r q(r, t) e-at dt (1% 

for q’, the time-dependent scattered flux at r. This step is equivalent to obtaining 
the Laplace inversion of the transforms. Also at our disposal, we have some 
auxiliary information about the time dependence of y and error information 
about the transforms. It is convenient to use retarded time as the independent 
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variable, i.e., t = T - r/v, where T is the real time. Since the time t is a real 
variable and y(t) is a real-valued function, we will be working entirely with real 
variables. We shall hereafter suppress, except as needed for clarity, any explicit 
dependence upon the distance r. 

We have chosen a cubic spline to represent the early-time behavior of the flux 
since it is convenient to use and it adequately represents the expected features of 
the solution. It will be observed that the spline representation of the time-dependent 
solution yields transforms which differ from the original transforms only by 
amounts (residual error) which are comparable with the expected uncertainty in the 
original data. 

Other representations of the early-time behavior are possible. However, to say 
that another representation is superior when it yields a residual error smaller than 
the uncertainty in the original data is not valid. Possibly the representation which 
requires the fewest parameters should be considered superior. We have not 
explored other alternatives. 

For time-dependent transport in a finite-spherical medium, the solution is of the 
form [9] 

y(r, t) = f ai eVit, 
i=l 

7ji > 0. (20) 

This fact reinforces our intuitive feeling that in our problem a sum of exponentials 
would be a good representation of the late-time flux behavior. Thus we shall 
represent our final estimate of v by a cubic spline function at early times and join 
to this at late times a two-term combination of exponentials. 

Another piece of auxiliary information inferred from the physical nature of the 
problem is that y increases monotonically and “smoothly” from zero at t = 0 
to a maximum, and thereafter it decreases monotonically and “smoothly” to zero 
as t + co. The term “smoothly” will be taken to mean that neither v nor its first 
two time derivatives exhibit any oscillatory behavior. 

We also observe that the final decay to zero goes as q(r) e-nit, where Q is the 
smallest of the Q . The error information is that the errors in the transform data 
are a few parts in lo5 or better. Recall that #(O) is the time-integrated flux. 

In Fig. 1 we show a schematic of the flux p(t) on the left and its Laplace transform 
on the right. We note that some features in the time domain are identifiable in the 
transform domain. We call attention to the singularity at s = -ql in the transform 
domain. 

Our approach is to use the auxiliary information to restrict the class of functions 
that are acceptable as estimates of 9. From the class of acceptable functions we 
select a “rough estimate.” Then, through an iterative least-squares fitting procedure 
which involves constraints, smoothing, etc., we successively improve the estimate 
until the residual errors are consistent with the error information. 
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TIME DOMAIN TRANSFORM DOMAIN 

FIG. 1. Schematic of the flux y(t) and its Laplace transform I,&). 

In Phase I of the solution procedure, we select 

v<t<B (21) 
771 < rl2 9 P<t 

as our “rough estimate” of y(t) and impose the condition that q?(t) be continuous 
in the interval 0 < t < co. Note that G(t) is a piecewise linear function for t < /3 
connected to a two-term exponential function for t > /?. 

The reason for selecting this form of “rough estimate” over a low-joint spline is 
that this function involves fewer parameters than, for example, a two-joint spline. 
We are assured this function will be in the class of acceptable functions, yet it is a 
sufficient estimate for this phase of the solution procedure. 

The Laplace transform of I$ is 

J(s) = @ - b, 7 Y(Z Vs> + g y(2, PS) + 5 (a - b)(e-‘” - e+*) 

+ 
e-B(s+?lJ % 

s + 711 
+ 

e-B(s+n,) ff2 

s + 772 
9 (22) 

where y(c, x) is the normalized incomplete gamma function [lo]. 
The parameters a, v, b, j?, aI , 01~) Q , and v2 are determined by minimizing the 

“residual error” term 

under the constraint that Q(t) be continuous in 0 < t < co. This problem is 

#r/9/2-1 I 
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nonlinear in the parameters V, p, 7 1 , and Q . The BOTM [l l] computer program 
used for this minimization requires starting estimates of all these parameters. 
The identification of corresponding features in the time and transform domain 
helps to estimate these starting values. 

We now proceed to Phase II. Here we change the parametrization of the flux 
estimate to a function that consists of an N-joint cubic spline joined to a two-term 
exponential function at t = 7 and require that the function and its first derivative 
be continuous at t = 7. Analytically, this function is 

C&l + NT C,(t - J,+,): , t<r 
k=5 

CNf5e-‘lt $ CN+6e-f12t, t 3 7, 

where J,,, , m = I,..., N, are the abscissas of the cubic-spline joints (knots), 
(x)9 = h(x) x”, where h(x) is the Heaviside unit step function and Q and qz are 
the corresponding parameters obtained for the “rough estimate.” The Laplace 
transform of $5 is 

t,@) = -fl $- r(k, 7s) + y c, $ I’149 S(’ - Jk--411 
k=S 

1 cN+5 e-~(s+nl) I sc;;2 e-~(~+nz), 

8 + 71 
(25) 

where ~(a, x) is again the normalized incomplete gamma function. 
Now we define the quadratic form 

Z, = c” (2’+-)z + K ,I W(t>(+“(t>>2 dt + 5 %gl qi(#i) - Pij2 (26) 
i=l 

and designate the first term on the right side as the “residual-error” term, the 
second term as the “smoothing” term, and the last one as the “prior-estimate” 
term. With K = 0 and [ = 0, the minimization of Z, would correspond to the 
method used in Phase I. The problem of solving for the N + 6 parameters C, is a 
linear one, but with the number of parameters needed here it is usually not well 
conditioned enough so that an acceptable + is obtained. In order to generate some 
estimates $j that are consistent with the auxiliary information, we use the “rough 
estimate” $3 as a guide in selecting spline joints J, , spline-exponential transition T, 
and smoothing weight function W(t). We set 5 = 0 and minimize Z, for several 
values of K while simultaneously imposing any equality constraints from the 
auxiliary information. At small K, the resulting residual error is small, but the 
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oscillatory behavior of the resulting $5 is unacceptable. At large K, a smooth @ 
is obtained, but the residual error is large. It is usually necessary to repeat this 
procedure several times in order to establish the number of spline joints and their 
locations, the parameter T, the smoothing weight B’(t), and to determine the 
range of values from which to select the optimum K. Of all the candidates for $5 
generated in this way, we select the ones that are consistent with all the auxiliary 
information, and among these we designate the one with the smallest residual error 
as the Phase II “good estimate.” In Phase III of the solution procedure we use the 
parameters of the “good estimate” to calculate and then subtract from $J the contri- 
bution to the Laplace transform coming from the spline part of the estimate $5. 
Then a function that is zero in 0 < t < T and a two-term exponential for t > T 
is used to obtain transforms that are fitted to the above differences. The object 
here is to improve upon the accuracy of the parameters q1 and Q, but in this phase 
only four parameters must be determined. 

In Phase IV we use the refined Q and Q from Phase III and again minimize 2, 
of Eq. (26). We use the smoothing weight function W(t) together with the set of pi 
corresponding to the “good estimate.” We set K equal to a smaller value than is 
used to obtain the “good estimate,” select a set of weights qi , and minimize Z, for 
a range of values of the parameter 5. Again, we impose any equality constraints 
on this minimization that are provided by the auxiliary information. At small < 
the candidates are much the same as in Phase II. At large 5 the Phase II “good 
estimate” is obtained. Intermediate values of 5 provide a bountiful supply of good 
candidates for $5. This procedure stabilizes the least-squares problem when we 
increase the number of spline joints and increase the spline-exponential parameter T. 
Of all the candidates for $5 generated in this way that are consistent with the 
auxiliary information, the one with the smallest residual error is selected as the 
Phase IV “better estimate.” 

Finally, an iteration is performed between Phases III and IV to improve the 
accuracy of the parameters Q and Q and to decrease the residual errors until they 
become consistent with the error information on the transform data. In Phase V, 
the pk are changed from one iteration to the next to correspond to the best previous 
“better estimate.” The qk , the smoothing weight function W(t), the parameter K, 

the number and location of the spline joints, the parameter 7, etc., are varied as 
the situation dictates. The best of these “better estimates is designated as the 
“best estimate” and is taken as our final estimate $7 of the time-dependent flux F. 

4. NUMERICAL RESULTS 

In this section we give numerical results for the time-dependent scattered flux 
at radii of 3 and 6 cm. Because of our desire to use the retarded-time scale, the 
appropriate values of & to use in Eq. (19) are obtained by multiplying the values 
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FIG. 3. Scattered flux vs time at R = 6 cm. 
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FIG. 4. Scattered flux vs time at R = 3 cm. 

from the CdeHP column of Table I by the factor exp(rs&). The Phase I estimate I$ 
and the final estimate q are shown in Figs. 2 and 3 for the two radii in question. 
Also, for comparison, we show results for the same problem obtained by 
Straker et al. [12]. The circles on the graph of + show the spline-joint locations, 
and the spline-exponential transition time T is written on the figures. The semilog 
plots of these data shown in Figs. 4 and 5 illustrate the late-time behavior of the 
solutions. 

Table II lists the z,& and the relative residual errors di = (I?~/#~ - 1) vs si for 
radii of 3 and 6 cm, respectively. At the bottom of the residual-error columns the 
average and standard deviations of these errors are given. 

The parameters for the “rough estimate” @ are given in Table III. 
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FIG. 5. Scattered flux vs. time at R = 6 cm. 

The standard deviation of the relative residual errors [$(sJ/#(sJ] - 1 is 2.97(-3) 
for R = 3 cm and 3.00(-3) for R = 6 cm. Note that there is more than a factor 
of one hundred decrease in the residual error in going from the “rough estimate” 
to the “best estimate.” 

The “best estimate” parameters are given in Table IV. The first four C’ are 
used in the first sum of the first line of Eq. (24) and the next N C’s and J’s (joints) 
are for use in the second sum. The last two C’s and the corresponding 7’s are for 
use in the exponential terms of Eq. (24). The parameter 7 is the time where the 
spline function joins the exponential function. The parameters listed in Table IV 
may be used to evaluate e(t) for any time in 0 < t < 00. Their use in Eq. (25) 
provides the corresponding transforms q(s). 



TABLE II 

Transforms #(s) and the Relative Residual Errors d(s) = ($(‘(s) - #(s))/#((s) 

R=3cm R=6cm 

S w 
-0.7 3.086845(-3) 
-0.6 1.343068(-3) 
-0.5 1.001368(-3) 
-0.4 8.127485( -4) 
-0.3 6.883265(-4) 
-0.25 6.401512(-4) 
-0.1 5.300436( -4) 

0 4.757420(-4) 
0.01 4.709146(-4) 
0.03 4.615479(-4) 
0.07 4.438712(-4) 
0.1 4.314621(-4) 
0.15 4.122152(-4) 
0.3 3.632760( -4) 
0.6 2.924006( -4) 
0.8 2.579004( -4) 
1.0 2.300617(-4) 
1.5 1.793114(-4) 
2.0 1.449863(-4) 
3.0 1.016459(-4) 
4.0 7.566177(-5) 
6.0 4.667951(-5) 
8.0 3.152179(-5) 

10.0 2.259730(-5) 
15.0 1.167147(-5) 
20.0 7.069163(-6) 

4s) 

1.80(-7) 
-2.83(-6) 
-9.89(-6) 

4.90(-5) 
-6.97( -6) 
-2.83(-5) 
-2.44(-5) 
-3.40(-6) 

1.31(-6) 
3.50(-6) 
1.38(-5) 
1.76(-5) 
2.62(-5) 
3.63(-5) 
1.55(-5) 

-7.77(-6) 
-2.61(-5) 
-2.36(-5) 

4.23(-6) 
2.41(-5) 
3.22(-6) 

-1.58(-5) 
-2.90(-6) 

1.04(-5) 
-3.25(-6) 

5.71(-7) 

4) 

1.936589(-4) 
4.380840(-5) 
2.762450(-5) 
2.026938( -5) 
1.600039(-5) 
1.446792( -5) 
1.121145(-5) 
9.728900(-6) 
9.600977( - 6) 
9.354542(-6) 
8.895957(-6) 
8.578991(-6) 
8.095513(-6) 
6.910149(-6) 
5.303743(-6) 
4.568050( -6) 
3.996156(-6) 
3.002889( - 6) 
2.366666(-6) 
1.603856(-6) 
1.168152(-6) 
7.016314(-7) 
4.661695(-7) 
3.305015(-7) 
1.678018(-7) 
1.006091(-7) 

1.91(-7) 
-3.18(-6) 
-8.09(-6) 

3.98(-5) 
-2.40(-6) 
-1.79(-5) 
-1.62(-5) 
-5.54(-6) 
-7.97(-7) 

1.22(-6) 
6.99( -6) 
1.09(-5) 
1.71(-5) 
3.04(-5) 
1.48(-5) 
2.00(-6) 

-1.22(-5) 
-2.38(-5) 
-6.50(-6) 

1.85(-5) 
1.15(-5) 

-1.52(-5) 
-6.91(-6) 

1.20(-5) 
-2.81(-6) 

3.61(-7) 

Mean = 1.95(-6)STD = 1.86(-5) Mean = 1.71(-6) STD = 1.46(-5) 

TABLE III 

Parameters for Q [see Eq. (21)] 

Parameter R=3cm R = 6cm 

2.93(-3) 
0.16 

-3.30(-4) 
1.23 
1.02(-5) 
3.3(-4) 
0.708 
0.898 

4.1q-5) 
0.18 

-4.08(-6) 
1.18 
9.81(-7) 
6.81(-6) 
0.708 
0.796 
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TABLE IV 

Fitting Parameters for Final Estimate 4 

R=3cm R = 6cm 

N= 13 

J1 = 0.1 

Jz = 0.18 

Js = 0.22 

Jl = 0.275 

Js = 0.32 

JB = 0.375 

J1 = 0.47 

J8 = 0.61 

Jg = 0.81 

Jlo = 1.15 

Jll = 1.58 

JIB = 2.05 

J18 = 2.55 

v1 = 0.716 

Q = 0.898 

7 = 3.25 

c, = 0 

C, = 4.05068(-3) 

C3 = -2.35676(-2) 

C, = 9.52431(-2) 

c, = -1.53334(-l) 

C, = -2.66884(-2) 

c7 = 1.71740(-l) 

C, = -7.56407(-2) 

C, = 2.94540(-2) 

Cl, = -5.05784(-2) 

Cl, = 8.83922(-3) 

C,, = 7.42776(-4) 

Cl, = 1.75028(-4) 

Cl, = 2.85755(-5) 

Cl, = -4.06546(-5) 

C,, = 6.89875(-5) 

Cl, = -6.44680(-6) 

Cl, = 2.39516(-5) 

C,, = 2.65638(-4) 

N= 11 

J1 = 0.12 

Jz = 0.20 

J, = 0.26 

Ja = 0.32 

Js = 0.38 

J6 = 0.46 

J, = 0.58 

J8 = 0.76 

J9 = 1.02 

Jlo = 1.37 

Jll = 1.84 

Tl = 0.710 

Q = 0.806 

7 = 2.35 

c, = 0 

C, = 5.52262(-5) 

C, = -2.88174(-4) 

c, = 1.13575(-3) 

C, = -2.90423(-3) 

C, = 3.05189(-3) 

C, = -1.01685(-3) 

C, = --1.22888(-4) 

c, = -5.70141(-5) 

C,, = -1.38091(-4) 

c,, = 4.59749(-5) 

Cl, = 6.67894(-6) 

C,, = -5.24669(-7) 

C,, = -2.72443(-6) 

Cl, = 3.56594(-6) 

C,, = 1.32408(-6) 

C,, = 6.55704(-6) 

5. DISCUSSION 

In the vicinity of the peak of the flux, our estimates + for both radii are signif- 
icantly above those of Straker et al. (see Figs. 2 and 3). In Figs. 4 and 5 we show 
both the TDA (Time-Dependent ANISN) and Monte Carlo results of Straker et al. 
for the scattered flux. For R = 3 cm, our time-integrated scattered flux in the 
interval 0.2 < t < co is 2 % below the Monte Carlo result and 1% above the 
TDA result. For the same quantities at R = 6 cm, our time-integrated scattered 
flux is 2 % above the Monte Carlo result and 11% above the TDA result. We claim 
an accuracy of a few parts in IO5 or better for our value of the time-integrated flux. 
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We vermed the TDA code results of Straker et al. by repeating these calculations 
ourselves. Because of the way in which space must be discretized for these calcu- 
lations, some error is introduced in the flux computed at the wavefront. On the 
basis of this and other experience with TDA, we feel that the differences between 
our results and those obtained with TDA are representative of the absolute accuracy 
of the TDA calculation. 

We have used a cubic spline to parameterize in the interval 0 < t < 7 and 
contrained the function and its first two derivatives to be nonoscillatory. We did 
not constrain the third derivative to be nonoscillatory because the cubic-spline 
function has piece-wise constant third derivatives which are discontinuous at the 
spline joints. The actual flux v has a continuous third derivative. Therefore, the 
third derivative of $Z would be expected, at best, to oscillate about the correct value. 
This effect is not noticeable in linear graphs such as Figs. 2 and 3; it is noticeable 
in the semilog plots of Figs. 4 and 5, especially at larger time where C$ is small and 
the spline joints are widely spaced. This effect can be diminished by using more 
joints or by going to a spline of higher degree. 

We emphasize that the use of negative-s transforms has played a very important 
role in our treatment of this problem and was especially useful in establishing the 
exponents Q and Q . 

It is clear from Eq. (20) that the parameters q1 and Q should be the same for all 
values of r. Our estimates of r), at R = 3 cm differ by less than 1 ‘A from its estimate 
at R = 6 cm. We believe this difference in the Q’S is representative of the error in 
them. The Q’S differ because they are different weighted averages of all the larger 
q’s which are not used in our approximation. This averaging effect may also have 
some effect on q1 . 

In the Phase V iterations which yield the final order of magnitude of decrease 
in the residual errors, we increased the number of spline joints by a factor of two 
and increased the spline-exponential transition time T by almost a factor of two. 
During these iterations the gross features of the estimate $i changed relatively little 
(a few percent). This suggests that for most practical applications of this procedure, 
transform data to an accuracy of about 1O-4 to 1O-3 would be adequate, and an 
estimate + with about half as many joints could be used. 

We can only guess at the accuracy of the estimate $. From the last few Phase V 
iterations which involved changes in the joint locations, changes of less than 1% 
in @ were observed. This leads us to believe the spline portion of the estimate + 
is accurate to about a percent. We believe that the exponential decay parameter v1 
is accurate to within 1%. 

It is obvious that as the various iterations progressed this technique has involved 
much interaction between computer calculations and human judgment. Although 
we do not know how to eliminate this completely, we are working on some tech- 
niques that will enable the machine to take over more of the problem. The use of 
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some kind of graphical display with immediate turnaround would be extremely 
useful. 

We turn now to a brief discussion of the nature of the intrinsic difficulty of this 
problem. Note that if the flux v in the integrand of Eq. (19) is replaced by 
(p’ + A cos wt), the left side of the equation becomes # + As/(s2 + w2) which 
approaches z,J as w -+ co. Our intuition senses this effect as the failure of the 
“smooth” kernel e-at to resolve high frequencies. Another way to express the 
difficulty is to look at a real form of the inverse Laplace transform operator given 
by Widder [13] 

y,(t) = lim 0” (T)“” $I’“’ (4). 
n-m n! (27) 

This operator is “unbounded” when applied to numerical values of # because it 
involves derivatives. In any attempt to invert the Laplace transform by using 
real-axis numerical data, the “unbounded” nature of the inversion operator 
manifests itself by giving rise to an ill-conditioned system to be solved numerically. 
The size of this system increases directly with the number of fitting parameters 
used in the flux estimate, and the ill conditioning increases drastically as the size 
of the system increases. We contend that in any approach to this problem that 
involves a least-squares minimization of residual errors, some kind of stabilizing 
influence must be used to cope with the ill-conditioned nature of the problem. 
We have provided this stabilizing influence by the use of constraints and the use 
of the “smoothing” and “prior-estimate” terms in Eq. (26) coupled with some 
auxiliary information about the flux 9 and some error information on the trans- 
forms #. 

Next we consider some statistics of the residual relative errors di = (& - &)/& 
of Table II. First, we simply assume that these errors correspond to independent 
samples drawn from a population where median is equal to zero. The chi-square 
test gives a probability of 0.70 for R = 3 and 1.0 for R = 6 that the resulting 
values of x2 be equaled or exceeded. We now assume that the A’s correspond to 
independent samples drawn from a normal population with mean equal to zero. 
An estimate of the standard deviation is [14] 

STD = ($ & Af2, n = 26. 

If we use this and the t-distribution with n - 1 degrees of freedom, we find 
probabilities of 0.60 and 0.56 for R = 3 and R = 6, respectively, and that the 
mean could deviate from zero as much as the observed values. 

We now ask: What is the value of the population variance a2 that would give 
x2 = (1/02) C di2 which h as a 0.05 probability of being exceeded ? Using 26 degrees 
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of freedom in the chi-squared distribution, we get CT~ = 2.31( -10) [u = 1.5( -5)] 
and u2 = 1.43(-10) [u = 1.2(-5)] for R = 3 and R = 6, respectively, which is 
consistent with our error information on the transforms data. 

We can also apply other tests. For example, if we divide the errors into “bins” 
and apply the chi-squared test, we find the observed residual errors di to be 
consistent with the assumption that they are drawn from a normal distribution 
centered at the origin with standard deviation as calculated by Eq. (28). 

Finally, we have presented a set of transform data with an accuracy of a few 
parts in lo5 or better, and we believe that the problem of unfolding estimates of the 
time-dependent flux from these data will provide a challenge to any unfold code. 
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